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1  | INTRODUC TION

Recent advances in technology offer the potential to improve field 
methods for rapidly and effectively monitoring biodiversity (Pimm 
et al., 2015). Among these advances is the use of aerial vehicles, or 
drones, that can carry remote sensing instruments to capture ex‐
tremely high spatial resolution imagery with temporal flexibility 
(Anderson & Gaston, 2013). Drones are relatively easy to use and 
their increasing ‘off the shelf’ application to wildlife research has 
been innovative and exciting (Chabot & Bird, 2012, 2015). There are 
increasing novel applications for monitoring both populations and 

behaviours of different fauna, including birds (Chabot & Francis, 
2016; Hodgson et al., 2018), elephants (Vermeulen, Lejeune, Lisein, 
Sawadogo, & Bouche, 2013), crocodiles (Evans, Jones, Pang, Saimin, 
& Goossens, 2016), chimpanzees (Van Andel et al., 2015) and marine 
mammals (Seymour, Dale, Hammill, Halpin, & Johnston, 2017).

Given the ability of drones to collect high quality data over large 
aggregations of wildlife, they offer an attractive opportunity for im‐
proving methods and increasing cost effectiveness of monitoring 
wildlife populations. The relative advantages of aerial counting—
both in‐air and from aerial imagery—for wildlife monitoring is long 
established, including reduced detection error, increased precision, 
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Abstract
1. Recent advances in drone technology have rapidly led to their use for monitor‐

ing and managing wildlife populations but a broad and generalised framework for 
their application to complex wildlife aggregations is still lacking.

2. We present a generalised semi‐automated approach where machine learning can 
map targets of interest in drone imagery, supported by predictive modelling for 
estimating wildlife aggregation populations. We demonstrated this application on 
four large spatially complex breeding waterbird colonies on floodplains, ranging 
from c. 20,000 to c. 250,000 birds, providing estimates of bird nests.

3. Our mapping and modelling approach was applicable to all four colonies, without 
any modification, effectively dealing with variation in nest size, shape, colour and 
density and considerable background variation (vegetation, water, sand, soil, etc.). 
Our semi‐automated approach was between three and eight times faster than 
manually counting nests from imagery at the same level of accuracy.

4. This approach is a significant improvement for monitoring large and complex ag‐
gregations of wildlife, offering an innovative solution where ground counts are 
costly, difficult or not possible. Our framework requires minimal technical ability, 
is open‐source (Google Earth Engine and R), and easy to apply to other surveys.
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reduced observer effects and retrospective analysis of data. For ex‐
ample aerial counting was more accurate and precise than ground 
counting using aerial images of penguin colonies (Fraser, Carlson, 
Duley, Holm, & Patterson, 1999) and geese (Boyd, 2000). Similar ad‐
vantages of image‐based counts over ground‐based counts have been 
demonstrated for drone‐acquired imagery too (Hodgson et al., 2018).

At large spatial scales (km) and for large aggregations (e.g. 
>5,000–10,000 individuals), in‐air aerial surveys provide cost effec‐
tive information on counts of individuals, breeding‐pairs and nests 
(Caughley, 1977; Kingsford & Porter, 2009), although sometimes 
suffering high variability and imprecision (Kingsford, 1999). High‐al‐
titude imagery from aeroplanes allows large areas, if not whole ag‐
gregations, to be captured in single images (e.g. in Boyd (2000) c. 
30 photos captured flocks of c. 10,000 geese). Owing to the fact 
that similar areas require many thousands of drone images and to 
the extra complexity from increased spatial resolution, drone use for 
monitoring wildlife aggregations continues to be limited to monitor‐
ing relatively small aggregations (i.e. <5–10,000 individuals), though 
there are some notable exceptions (Afán, Máñez, & Díaz‐Delgado, 
2018; Chabot & Bird, 2012; Chabot, Craik, & Bird, 2015).

Manually counting targets of interest (e.g. individual animals, 
breeding‐pairs, nests) from aerial images, regardless of capture 
platform, is laborious. This has driven the development of auto‐
mated or semi‐automated counting approaches (Chabot & Francis, 
2016; Hollings et al., 2018), aided by the widespread availability of 
increased computing power, growing computer literacy and new 
methods. Current approaches typically involve spectral thresholding 
(Chabot & Bird, 2012; Seymour et al., 2017), point process algorithms 
(Descamps, Bechet, Descombes, Arnaud, & Zerubia, 2011) or com‐
binations of spectral properties and predictive modelling (Hodgson 
et al., 2018). These methods rely on high contrast (i.e. dark animals 
on light backgrounds or light animals on dark backgrounds) and con‐
sistency in the shape and colour of the targets (Hollings et al., 2018). 
They are generally only applicable when the spectral and structural 
characteristics of the animals (in the images) are unique compared 
to the rest of the image (Chabot & Francis, 2016). More recently, 
remote sensing‐based methods have been used to overcome chal‐
lenges with low contrast and high variation among target objects 
(Afán et al., 2018; Chabot, Dillon, & Francis, 2018; Drever et al., 
2015; Groom, Petersen, Anderson, & Fox, 2011; Liu, Chen, & Wen, 
2015).

Despite the interest in automated methods for counting aggre‐
gations of birds, their use by ecologists and managers for monitor‐
ing complex wildlife aggregations remains limited (Chabot & Francis, 
2016), with manual approaches still dominating (Buckland et al., 
2012; Drever et al., 2015). There are three key reasons that have 
been highlighted for the disconnect between new methods and their 
ecological application: (a) most methods have only been demon‐
strated at small spatial scales relative to real‐world applications 
(even if the number of individuals is very large) and in homogenous 
areas with little environmental complexity (Hollings et al., 2018); (b) 
ecological complexity and outcomes are not appropriately consid‐
ered with respect to the mobility of individuals and variation in the 

types of target features of interest (Baxter & Hamilton, 2018); and (c) 
there is a high technical threshold for implementing most methods 
(Chabot & Francis, 2016).

In this paper, we develop a semi‐automated framework for mon‐
itoring large complex wildlife aggregations using drone‐acquired im‐
agery. We use the case study of colonial waterbird breeding colonies 
because they present the key challenges currently inhibiting uptake 
of drone‐based methods; the colonies cover large spatial extents and 
can have range of density of animals across these extents; there are 
many thousands of highly mobile individuals that cannot be contained 
to single drone images; the target features of interest are nests, which 
can exhibit significant differences in structure and colour across space 
and time (e.g. empty nests, adult/juvenile/chick/egg occupied nest, 
variable nest material, variable nest shape and arrangement); and 
considerable variation in background environment (mud, sand, water, 
live/dead vegetation). We developed a set of generalised methods, 
that could be transferred directly between colonies without mod‐
ification, and required relatively little technical ability to apply. We 
captured imagery over four breeding waterbird (mostly Straw‐necked 
Ibis) colonies in New South Wales, Australia, ranging in size from c. 
20,000 to over 200,000 birds, including the largest ever waterbird 
colonies to be surveyed by drone. We detail flight planning, image 
acquisition and processing, manual and automated methods for map‐
ping and counting nests. We include the Google Earth Engine and R 
code required for our analyses, along with a web‐app to explore drone 
data, intermediate machine learning predictor and nest map layers.

2  | MATERIAL S AND METHODS

Our primary motivation was mapping and counting nests for breed‐
ing colonial waterbirds, with wide applicability. The methodology 
needed to work on both small (c. 10,000–20,000 birds) and large 
(200,000+ birds) colonies and be transferable across different envi‐
ronments and applications, requiring limited technical modification 
or ability. We developed a modular approach that included: (a) drone 
image surveys of four large breeding colonies; (b) manual counting 
of nests for training and validation; (c) a machine learning mapping 
method to map nests from drone imagery; and (d) a predictive mod‐
elling method to estimate total nest numbers.

2.1 | Study location and bird colony details

Straw‐necked Ibis Threskiornis spinicollis are an Australian nomadic 
waterbird species which form very large breeding colonies, some‐
times mixed with other waterbird species, when ecological condi‐
tions are favourable (Brandis, Koeltzow, Ryall, & Ramp, 2014). We 
surveyed four colonies: Merrimajeel, Zoo Paddock, Eulimbah and 
Block Bank (Table 1). We surveyed the colonies at around their 
maximum size, determined by progression of breeding (Brandis, 
Kingsford, Ren, & Ramp, 2011). Straw‐necked Ibis typically make 
their nests in flooded wetlands and floodplains, using inundated 
vegetation as nesting material raised above ground/water level. The 
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vegetation at the sites was dominated by Lignum shrubs Duma flor-
ulenta and Common Reed Phragmites australis. Nests can be isolated 
nests or ‘clumped’ (10–200 nests). The nests are generally round or 
oblong in shape, but are often irregular in large clumps, with tram‐
pled vegetation, forming a dark green to brown colour, which in‐
creasingly whitens with guano (Figure 1), until nests are abandoned 
either when offspring are lost or chicks fledge; at the latter stages, 
nests begin to lose structure and colour. At any point, nests may 
be empty, occupied by adults, eggs or juveniles, or a combination 
depending on parental foraging and care and chick mortality and 
fledging (Figure 1). All four colonies we surveyed had a mix of nest 
and juvenile ages, along with foraging and in‐flight birds away from 
nests. Most (>90%–95%) of birds in the colonies were Straw‐necked 
Ibis, a dark glossy blue‐black bird on their back and wings, and with 
a white underside (black when viewed from above). The remain‐
ing 5%–10% of birds were composed of Australian White Ibis T. 
Molucca, Glossy Ibis Plegadis falcinellus and Spoonbills Platalea spp. 
All the bird species are <1 m tall and <50 cm in length when roost‐
ing, and most nests are between 20 and 40 cm in diameter.

2.2 | Drone data and processing

Drone image data were collected during Spring and Summer of 
2016 and 2017 (Table 1), using a DJI Phantom 3 Professional quad‐
copter, with the stock single sensor red/green/blue (RGB) camera 
(4,000 × 3,000 image size, lens FOV 94° 20 mm). Colonies were 
within large flooded extents (km's wide), so multi‐rotor drones were 
the only option, with no landing area for fixed‐wing drones. We 
launched a drone from an amphibious vehicle or canoe used to enter 
the colonies. Flights were conducted using parallel flight lines, at c. 
100 m and speed of 5–10 ms−1 (Lyons, Brandis et al., 2018; Lyons 
et al., 2019). We aimed to acquire imagery with c. 70% forward and 
lateral overlap to ensure adequate coverage for post‐processing. We 
acquired imagery over the entire extent of the four colonies, includ‐
ing a 200–300 m buffer around the colony edges. Depending on 
weather and environmental conditions, we surveyed 5–20 hectares 
per flight, requiring multiple flights to survey each colony. There 
were no obvious negative interactions with the waterbirds; further 
animal ethics considerations can be found in Lyons, Brandis et al. 
(2018), and a more detailed protocol for drone‐based monitoring of 
waterbird colonies in Lyons et al. (2019).

The drone imagery was processed using the commercial soft‐
ware Pix4DMaPPer (v4.19, Pix4D SA), which uses a photogrammetry 
technique called ‘structure from motion’ to identify points in over‐
lapping images, ultimately generating a 3D point cloud reconstruc‐
tion of the landscape. The 3D information is then used to generate a 
digital surface model and an orthorectified image mosaic. Only stan‐
dard accuracy GPS (5–10 m accuracy) was used for georeferencing. 
This resulted in some error in absolute geographic location, but was 
not important, given our focus on identification and relative position 
of nests in the image mosaics.

2.3 | Semi‐automated approach for nest counting

Once the imagery was acquired, we needed to effectively identify 
nests which were highly variable in shape and colour, and some‐
times had low contrast to the surrounding environment (Figure 1). 
We initially tested a point process algorithm (Descamps et al., 
2011) but it could not handle large data sizes; an object‐based 
image analysis routine (sensu Chabot et al. (2018)) but it had dif‐
ficultly identifying more than 3,000–5,000 nests with one ruleset; 
and a machine learning/modelling approach (Hodgson et al., 2018) 
but it could not identify more than c. 1,000 nests with one param‐
eterisation (see Data accessibility for modified Matlab routine). No 
particular technique worked effectively within or between the col‐
onies, supporting similar findings on the limitations of automated 
and semi‐automated methods (Hollings et al., 2018). So, we devel‐
oped a modular approach, adaptable to variable target properties 
and scalable to large spatial extents, applicable to multiple colo‐
nies. This involved first mapping the area of nests using a remote 
sensing approach, and then estimating the number of nests using a 
predictive modelling approach.

2.3.1 | Manual counts for training and 
validation data

A comprehensive training and validation dataset was critical for 
developing counting methods. So, we first manually and system‐
atically counted all the nests in the imagery over all colonies. We 
imposed a 50 × 50 m grid of quadrats on each colony, and digi‐
tally annotated every visible nest. We used this gridded method 
for two reasons: (a) it enabled an observer to sequentially work 

TA B L E  1   Location and information on drone‐surveyed waterbird colonies. All colonies were in New South Wales, Australia. Nests were 
manually counted from the drone‐based imagery. Nest count error was calculated from in situ ground counts cross‐referenced with manual 
nest counts from drone imagery

Location (Colony name) Date
Approx. 
colony size

Manual nest 
count

Manual nest 
count error

Estimated number  
of birdsa

Lachlan River (Merrimajeel) Oct 2016 60–65 Ha 96,989 ±6.1% 200–250,000

Macquarie Marshes (Zoo Paddock) Nov 2016 60–65 Ha 20,411 ±8.8% 40–50,000

Murrumbidgee River (Eulimbah) Nov 2016 15–20 Ha 13,343 ±8.4% 30–40,000

Lachlan River (Block Bank) Sep 2017 7–10 Ha 7717 ±12.1% 15–20,000

aFrom (Lyons, Brandis et al., 2018) – the estimated number of birds incorporates site‐specific information. 
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through the whole colony, while reducing distraction (and com‐
puter memory overhead) from surrounding areas; and (b) it re‐
flected real‐world practices when users choose only a limited 
number of training quadrats to manually count nests. During the 
field work, we also counted nests (in situ) at several GPS‐tagged 
locations at each colony, which we used to test the accuracy of 
the drone‐based manual counting.

2.3.2 | Machine learning mapping

We applied a supervised machine learning approach to map nests 
at each colony. We defined nests as any material or bird that con‐
stituted a nest or nest clump, based on our experience in the field. 
Motivated by its robustness to redundant predictor variables, we 
used a random forest classifier (Breiman, 2001), which enabled us to 

F I G U R E  1   Example drone imagery 
showing the variation in nest types 
and environments across four breeding 
colonial waterbird (mostly Straw‐necked 
Ibis) colonies. Images from top row 
to bottom row are from the following 
colonies: Merrimajeel, Zoo Paddock, 
Eulimbah and Block Bank (details in 
Table 1)
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use a training dataset of nest locations and a suite of relevant image 
predictor variables to predict nests out into image pixels across the 
entire study area. The random forest procedure works by taking 
many different bootstrapped samples of the training data and fit‐
ting a classification tree to each of them, with each candidate split 
along the decision tree considering a random selection of the predic‐
tor variables. This ensures uncorrelated trees and stops the decision 
trees from overfitting (Breiman, 2001). The final prediction is taken 
as the mode of the classification tree results, with the classification 
being robust to collinear and redundant predictor data. This allowed 
us to include many different image‐based predictor variables with‐
out altering the approach for different colonies.

All nests were manually identified, so we sampled a subset to 
train the random forest classifier to simulate the scenario of man‐
ually counting only a small proportion of the nests/image area. To 
simulate the 50 × 50 m quadrats, we placed a grid of points across 
the colony at least 30 m apart and within 1 m of an identified nest 
(to avoid choosing training areas where there were no nests), and 
randomly chose a number of those points as a classifier training lo‐
cation. To approximate the 50 × 50 m quadrat area, a 30 m buffer 
was placed around each chosen training locations, within which all 
manually counted nests were selected for training. Each 30 m buffer 
would select between c. 100–1,000 nests. We trialled between 5 
and 20 training locations for each of the colonies. The classifier also 
requires non‐target features (non‐nest) randomly spread across the 
colonies: 1,000 points for the smaller colonies (Eulimbah and Block 
Bank) and 10,000 points for the larger colonies (Merrimajeel and Zoo 
Paddock).

We derived arithmetic and textural metrics from the red, green 
and blue channels (r, g, b respectively) in the drone data to use as pre‐
dictor variables in the random forest classification. These included: a 
‘white’ index b+g

r
; a Laplacian‐8 edge‐detection kernel on the ‘white’ 

metric; an RGB vegetation index g−r
g+r

 (Bendig et al., 2015); a ‘green 
brightness’ index g

b+g+r
; the ‘contrast’, ‘variance’, ‘inverse difference 

moment’ and ‘shade’ texture metrics from the Gray Level Co‐occur‐
rence Matrix (Haralick, 1979), applied to each of the ‘white’ index 
and blue band; the standard deviation within a 2 m and 7 m radius of 
each pixel applied to the ‘shade’ metric and vegetation index; and a 
1st and 2nd order difference of Gaussians (Polakowski et al., 1997) 
on the ‘shade’ metric.

The training dataset was compiled by extracting the pixel values 
for each image metric layer within a 10 cm buffer (minimum nest 
diameter 20 cm), around each training nest and non‐nest point, so 
the random forest classifier was a binary nest and non‐nest classifi‐
cation. The algorithm was parameterised with 500 trees and a min‐
imum leaf population of 10. We implemented the predictor variable 
calculation and random forest classification in Google Earth Engine 
(Gorelick et al., 2017), allowing a seamless prototyping, visualisation 
and production environment for processing the large high‐resolution 
image datasets. Any contiguous areas <0.03 m2 (minimum nest size 
of 20 cm diameter) were deemed to be noise and removed before 
exporting. Google Earth Engine is freely available to anyone, and we 
provide the JavaScript code required to run the classifications, along 

with an interactive web‐app to explore some drone data, predictor 
layers and nest classification interactively (link in Data accessibility 
section).

We assessed the nest mapping accuracy via a standard error ma‐
trix approach, using the full manually counted dataset, along with an 
extended collection of background points. The background points 
were compiled from random points spread across the colony area 
(approx. as many points as there are nests), constrained to be >20 cm 
from a nest point. This provided a balanced validation dataset, to 
get a good estimate of overall mapping accuracy, as well as omission 
and commission error for nest mapping. We used an empirical boot‐
strapping approach (Lyons, Keith, Phinn, Mason, & Elith, 2018) to 
get confidence intervals for overall accuracy. Accuracy metrics were 
calculated in r version 3.5.1 ((R Core Team 2018); see Data accessi‐
bility section).

2.3.3 | Predictive model estimation

To estimate the number of nests as a function of the mapped nest 
area for each colony, we used predictive modelling. We first sum‐
marised the number of manually counted nests and the mapped nest 
area within each 50 × 50 m quadrat. We then predicted the number 
of nests in each quadrat, with the whole colony count being the sum 
of the quadrat estimates. We used two simple approaches: (a) an as‐
sumption that the number of nests was directly proportional to the 
mapped nest area (linear area:count ratio); and (b) a generalised lin‐
ear model (GLM; Poisson error distribution) of nest count as a func‐
tion of nest area and local nest density. We expected that the local 
density of nests would have a relationship with the number of nests. 
Density was calculated as the percentage of the 50 × 50 m quadrat 
mapped as nests. Using a GLM with a negative binomial error distri‐
bution or a generalised additive model with smoothers for nest area 
and density provided no appreciable gains, so neither was pursued.

We used a resampling procedure to examine the number of man‐
ually counted 50 × 50 m quadrats needed to accurately estimate the 
number of nests for a whole colony. This involved repeated random 
sampling of n quadrats, estimating the number of nests using the 
area ratio and GLM approaches described above. We used 800 iter‐
ations without replacement (i.e. Monte Carlo resampling, not a boot‐
strap) for each of 1, 2, …, nmax quadrats. This resulted in a sampling 
distribution of 800 whole‐colony nest count estimates at each n.

To simulate the scenario of limited resources for manual count‐
ing, we implemented another resampling approach to determine 
whether a given sample of the manually counted quadrats provided 
an accurate estimate (plus a confidence interval) of nest count for 
a whole colony. This involved a random draw of n quadrats (i.e. 
scenario of choosing a set of quadrats for training), and applying a 
repeated k‐fold cross‐validation using the area ratio and GLM esti‐
mation approaches. Each random draw of quadrats was stratified by 
mapped nest area density, to simulate choosing a range of nest den‐
sity quadrats to count. We used k = 10 and 10 repeats for the cross‐
validation, and varied n from c. 10%–40% of the total number of 
manually counted quadrats. This resulted in a sampling distribution 
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of 100 nest count estimates for each random draw of quadrats, and 
we took the mean as the resampling estimate and 2.5 and 97.5 per‐
centiles as a 95% confidence interval. We decided on k‐fold resam‐
pling as a good approach to reduce bias for the small sample sizes, 
but a range of resampling options are available (Lyons, Keith, et al., 
2018). All statistical analysis was performed in r version 3.5.1 ((R 
Core Team 2018); see Data accessibility section).

3  | RESULTS

3.1 | Manual training and validation nest counts

The four study colonies varied widely in size, number of nests and bird 
density (Table 1). The flying height of c. 100 m generated orthomosaic 
imagery with a pixel size between 3 and 4 cm. It took 5–15 min to 
manually count the nests in a 50 × 50 m quadrat, with higher nest den‐
sity on the upper end of that time. Ibis nests and the flooded colony 
environment were so variably complex that it was often not possible 
to accurately manually count nests, even from 3 to 4 cm pixel drone 
imagery. Occasionally, artefacts from drone imagery processing also 
obstructed counting. The accuracy of the manual counting was esti‐
mated using the on‐ground field counts, which ranged from ±6% to 
±12% (Table 1). The smallest colony had a manual count of 7,717 nests 
and the largest colony had 96,989 nests, and with an estimated popu‐
lation of over 200,000 birds at the time (Lyons, Brandis et al., 2018).

3.2 | Semi‐automated approach

The same Google Earth Engine code was applied to each colony, 
showing that the nest area mapping routine was robust to differ‐
ing background environments and nest characteristics within and 
among each of the colonies. Around 10 of the 30 m training buffer 
locations were required for consistent classification of the large ex‐
tent colonies (Merrimajeel, Zoo Paddock; c. 5% total area), and around 
5 for the smaller extent colonies (Eulimbah, Block Bank; c. 10% total 
area). The chosen predictor variables did a good job at extracting the 
salient features of the bird colonies (Figure 2) and the machine learn‐
ing classification appeared to identify nests and birds appropriately 
(Figure 3). The accuracy assessment showed the nest mapping rou‐
tine performed well, with overall accuracy between 94% and 96% 
for Merrimajeel, Eulimbah and Block Bank and 86% for Zoo Paddock 
(Table 2). For all colonies, omission error was low and commission 
error was higher (Table 2), demonstrating that the mapping routine 
rarely missed nests, but included too much background as nest mate‐
rial. This was particularly the case for Zoo Paddock, which had a very 
high commission error (27.3%) and a lower overall accuracy (86%). 
Supporting Information Table S1 contains the raw accuracy assess‐
ment error matrices from which the accuracy measures were derived.

The first resampling routine demonstrated that considerable 
variation in nest estimates was likely given any random draw of 
quadrats, but only a small subset of the quadrats was required to 
capture most of the variation and provide estimates within the man‐
ual count error range (Supporting Information Figure S1). For the 

three colonies with >50 quadrats, the variability increased relative to 
the population size component of a finite population corrected stan‐

dard error, 
√

(

1−
n

N

)

∕N, where n is the number of sampled quadrats 

and N is the total available quadrats. So for larger colonies, users 
could use this relationship with choose the size of the manual count 
needed based on either a desired count error or estimate where it 
starts to tail off towards zero. There was no noticeable improvement 
in using the GLM estimation method over the straight area ratio 
method. Comparing the results of the nest count estimates for indi‐
vidual quadrats showed that there was a large amount of variation 
among estimates for individual quadrats, the primary motivation for 
the use of a resampling‐based estimate (Supporting Information 
Figure S2).

For the k‐fold nest count estimation, we decided that an ade‐
quate number of quadrats (n) to use would be signified by most of 
the estimates from each k‐fold cross‐validation falling within the 
error margin of the manual nest counting (Figure 4, Table 3). For 
the two largest colonies, Merrimajeel and Zoo Paddock, we used 30 
quadrats (c. 12% of all 50 × 50 m quadrats) to provide accurate es‐
timates. For the two smaller colonies, Eulimbah and Block Bank, we 
used 15 and 10 quadrats respectively (c. 20% and c. 30% of total 
quadrats respectively). The manual effort time saving was best for 
the larger colonies—the nest counts were eight times faster for the 
two larger colonies (Merrimajeel and Zoo Paddock), but only five and 
three times faster for Eulimbah and Block Bank respectively (Table 3). 
The estimation was most accurate for the smaller two colonies, and 
there was some over estimation for the larger colonies, particularly 
Zoo Paddock (Figure 4), that could not be rectified with more train‐
ing data. Again, there was no noticeable gain in using the GLM es‐
timation method over the straight area ratio method; the gain from 
stratifying the random draw by mapped nest density was far more 
appreciable.

4  | DISCUSSION

We developed a generalised approach for monitoring complex wild‐
life aggregations, demonstrated through semi‐automated analysis of 
drone‐based remote sensing imagery over four large and complex 
waterbird colonies. The approach accurately mapped nests, and 
subsequently provided accurate estimates of nest numbers. The 
method offers significant time savings compared to manual counts 
from the imagery. In our study, we obtained accurate maps and es‐
timates of nests for one of Australia's more extensive breeding of 
colonial waterbirds, and some of the largest waterbird colonies ever 
surveyed via drone. Our methodology is simple and robust enough 
to be applied in multiple environments, and works for both sim‐
ple and complex target features. Continued development will see 
drone‐based monitoring become integrated into waterbird monitor‐
ing (Lyons et al., 2019), and used to help quantify salient biological 
features like nesting success (Sarda‐Palomera, Bota, Padilla, Brotons, 
& Sarda, 2017). There are clear benefits for monitoring some of 
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the many other species of birds that form complex aggregations, 
and our methods will be easy to test on other wildlife in different 
environments.

Our approach is modular, and the nest mapping and counting is 
implemented on free open source platforms, allowing users to read‐
ily change parameters or substitute their own or more appropriate 

methods. The semi‐automated approach applied a machine learn‐
ing classifier to high‐resolution drone imagery to identify nests 
(Figures 2 and 3, Table 2), supported by modelling to estimate nest 
counts (Figure 4). The methods were effectively applied across four 
different waterbird colonies, that contained highly variable target 
features on variable backgrounds. The colonies ranged in size from 

F I G U R E  2   An example of image 
metrics derived from drone imagery 
over a waterbird (mostly Straw‐
necked Ibis) colony (Eulimbah), used as 
predictor variables in the random forest 
classification: (a) raw drone imagery; (b) 
‘white’ brightness image; (c and d) Gray 
Level Co‐occurrence Matrix (GLCM) 
‘shade’ and ‘contrast’ of the ‘white’ metric; 
(e) GLCM ‘shade’ of the blue reflectance; 
(f) RGB vegetation index; (g) difference of 
gaussians applied to the GLCM ‘shade’ on 
the ‘white’ metric; (h) an RGB composite 
of the ‘white’ metric and the standard 
deviation within a 2 m and 7 m radius for 
the GLCM ‘shade’ of the ‘white’ metric

(a) (b)

(c) (d)

(e) (f)

(g) (h)



8  |    Methods in Ecology and Evoluon LYONS et aL.

around 7,000 nests to almost 100,000 nests (Table 1), and our 
semi‐automated method required only relatively small amount of 
training data to produce comparable accuracy to manually count‐
ing from the drone imagery (Figure 4, Table 3). Here we further 
discuss the cost‐benefit aspects, opportunities for wider uptake, 
current challenges, and finish with some recommendations moving 
forward.

4.1 | Cost‐benefit of the semi‐automated approach

The two key motivators for drone‐based automated methods are re‐
ducing (on‐ground) human observer bias and reducing cost (Baxter & 
Hamilton, 2018; Chabot & Bird, 2015; Hodgson et al., 2018; Hollings 
et al., 2018). For large and complex wildlife aggregations, such as our 
waterbird colonies, it is rarely possible to perform comprehensive 

F I G U R E  3   Example nest area 
classifications for four colonial waterbird 
(mostly Straw‐necked Ibis) colonies, 
surveyed via drone and classified using 
a random forest classifier in the Google 
Earth Engine. Images from top row 
to bottom row are from the following 
colonies: Merrimajeel, Zoo Paddock, 
Eulimbah and Block Bank. Full details in 
Tables 1 and 2
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on‐ground counts and so drone‐use provides an attractive option, 
and coupled with semi‐automated methods, presents significant time 
savings too. In our case the large colonies were eight times quicker 
to survey (Table 3), representing a cost (time or money) saving of 
almost 90% compared to full manual counts. Cost‐benefit analy‐
sis will continue to vary with user ability and conditions, including 
data acquisition in the field, drone image processing, modelling and 
programming, and even the level of detail and accuracy required for 
monitoring outcomes. Benefits will also vary with the nature of appli‐
cation with one‐off monitoring perhaps better achieved using manual 
methods, until the technology and processes become routine. The 
efficiency increases in Table 3 are probably more likely to represent 

the potential time savings of further application of the methods. For 
new applications in novel environments, large manual counts are 
probably still required to understand the potential sources of error.

4.2 | Opportunities for uptake of semi‐
automated methods

Transferability across environments and spatial scales has prevented 
widespread adoption of semi and fully automated methods in wild‐
life monitoring (Chabot & Francis, 2016; Hollings et al., 2018). We 
successfully implemented our semi‐automated approach, using the 
same routine/code, on four different waterbird colonies, providing 
immediate applicability for other avian applications, and opportu‐
nities more broadly for large complex aggregations of wildlife. The 
key challenge we overcame was identification of target features with 
high spatial and spectral variation, on high variability backgrounds, 
across large spatial extents. Most current detection approaches rely 
on methods that require high consistency in the spatial and spectral 
organisation of target and background features. Our use of a ran‐
dom forest classifier efficiently handled redundant predictor data 
(Breiman, 2001), allowing inclusion of many different colour, spatial 
and textural metrics as predictor layers. This helped capture more of 
the spatial and spectral variation in target features, compared to just 
using the image colour, as well as potential image blur and illumina‐
tion artefacts (Figure 3, top row).

TA B L E  2   Accuracy assessment results for mapping of nests in 
four different waterbird colonies, based on drone imagery and a 
machine learning algorithm. Measures include the overall accuracy 
(plus a bootstrapped 95% confidence interval) and the omission and 
commission error for nests

Colony 
name

Overall accu‐
racy (%) (95% CI)

Nest omis‐
sion error (%)

Nest commis‐
sion error (%)

Merrimajeel 94.1 (94–94.2) 1.2 10.4

Zoo 
Paddock

86 (85.6–86.3) 0.9 27.3

Eulimbah 95.8 (95.5–96) 1.7 6.9

Block Bank 94.7 (94.3–95) 4.7 5.9

F I G U R E  4   Resampling estimates of nest counts for four breeding waterbird (mostly Straw‐necked Ibis) colonies surveyed via drone, trained 
using a classification of nest area and manually counted nests. Each black dot represents the mean of the sampling distribution (10× repeated 
k‐fold k = 10 cross‐validation) for a different subset of the manually counted training nests (corresponding lines denote 95% percentile), and 
the red horizontal lines denote the manual estimate for the whole colony, and the 95% error margin calculated from on‐ground counts
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Research is increasingly tackling this issue of consistency across 
target and background features, adapting methods from remote 
sensing mapping (Afán et al., 2018; Chabot et al., 2018). Application 
of a single consistent detection routine to many different applica‐
tions will provide significant opportunity for broad uptake across sci‐
entific and management applications (Hollings et al., 2018). Although 
we found that existing methods (Chabot et al., 2018; Descamps 
et al., 2011; Hodgson et al., 2018) were not directly able to deal with 
the level of complexity in our case studies, our method ultimately 
required more training data, which reduces the overall cost saving. 
Thus continued development of a range of methods will provide op‐
portunities for significant time and cost savings when applied over 
large spatial extents, over time.

Detection approaches from imagery, such as drone imagery, are 
increasingly benefiting from the remote sensing disciplines (Chabot 
et al., 2018), due to innovations in dealing with large volumes of data 
efficiently. Existing detection methods typically deal with image tiles 
in the order of 1–10 Mb. Our waterbird colonies involved 500 Mb 
to 5 Gb of data, requiring significantly improved data management 
and analysis. Use of the Google Earth Engine platform (or similar 
platforms) enables handling of large data, and will facilitate future 
expansion into web‐based tools where users only supply imagery 
and training data, reducing local expertise and computing resource 
requirements.

We successfully identified both nests and individual birds 
when they were away from their nests (see Figure 3, 3rd row). This 
demonstrates the opportunity to use our mapping driven approach 
to identify and count individual waterbirds. Indeed Chabot et al. 
(2018) used an object‐based mapping approach for identifying and 
counting individual Snow Geese. If only individual birds were of 
interest, and they did not form complex spatial aggregations, the 
mapping process would be sufficient to identify and count individ‐
uals (i.e. the k‐fold estimation process would be unnecessary). This 
represents an additional cost saving because it took less training 
data to train the machine learning mapping (e.g. for Merrimajeel, 
c. 5% of the quadrats were needed to train the random forest, 
but 12% were needed to train the k‐fold estimation). For small 
and simple tasks (e.g. counting just a few thousand birds or nests) 
our k‐fold estimation process could also be replaced with simple 
thresholding or classification of the predictor metrics. For exam‐
ple thresholding and vectorizing the predictor layers we used (e.g. 
Figure 2, bottom row) produces accurate nest counts, but these 

thresholds become increasingly variable as spatial scale increases, 
making consistent application difficult.

4.3 | Challenges for drone‐based monitoring

Our main challenge was converting nest maps to nest counts. A re‐
mote sensing approach allowed us to make very accurate nest maps 
(three colonies c. 95% accurate, one colony c. 86%; Table 2), but the 
complex organisation of nests (i.e. different shapes and sizes, irreg‐
ular overlapping and aggregation) prevented a direct conversion to 
singular pin‐pointed nest locations. We used the k‐fold estimation 
approach to overcome this limitation to estimate nest counts from 
nest maps, but note that while the overall colony counts were ac‐
curate, nest counts for some individual quadrats contained signifi‐
cant error (Figure 4, Supporting Information Figure S2). For the Zoo 
Paddock colony, the high commission error (Table 2), led to some 
over estimation of nest count (Figure 4, Table 3). This colony had a 
large spatial extent but was only sparsely populated, compared to 
the other large colony (Merrimajeel; Table 1). Improved modelling of 
density effects may reduce this problem. As it was, only five out of 
the 40 scenarios we ran would be considered a sizable overestima‐
tion (Figure 4), and even then these numbers would be unlikely to 
affect local management decisions (Brandis et al., 2011), but this 
may vary depending on the application. We randomly selected 
quadrats, so a more judicious initial choice of quadrats for training 
(e.g. choosing a range of nest densities) may also rectify this issue 
to some degree.

Another challenge is the potential impact of uncertainty (c. 
6%–12%, Table 1) in manual counting that can propagate through 
to the mapping and estimations. Moving semi‐automated methods 
to increasing spatial scales or more complex environments requires 
dealing with more variation in image quality and limitations in the 
resolution able to be captured (Hollings et al., 2018). In our surveys, 
image resolution and quality was a challenge, affected by our ability 
to access appropriate remote points for take‐off and landing, along 
with environmental and ethics considerations that limited time avail‐
able to collect imagery. This led to varying incident sun angles and 
wind conditions during image collection, resulting in sun glint and 
image blur that sometimes obscured manual counting. Identifying 
old nests (e.g. Figure 1, top and bottom rows) was difficult, poten‐
tially further increasing manual counting errors. Our cross‐validation 
approach was motivated by the need to account for uncertainty, 

TA B L E  3   Manual and semi‐automated counting results for drone‐surveyed waterbird colonies. Colonies were divided into a grid of 
quadrats and nests were manually counted with accuracy from in situ counts. k‐fold nest estimates were derived from our semi‐automated 
approach, using 40 different random subsets of quadrats

Colony name
50 × 50 m quad‐
rats in grid

Manual nest count 
(±manual error)

Mean and range of k‐fold 
nest estimates

Full count ef‐
fort (hours)

k‐fold count effort 
(hours and speed‐up)

Merrimajeel 233 96,989 (91,073–102,905) 99,645 (90,383–106,727) 40 5 (8×)

Zoo Paddock 244 20,411 (18,615–22,207) 21,432 (16,627–27,361) 42 5 (8×)

Eulimbah 71 13,343 (12,222–14,464) 13,479 (12,212–14,879) 12 2.5 (5×)

Block Bank 33 7,717 (6,783–8,651) 7,777 (7,152–8,425) 5.5 2 (3×)
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and generally accounted well for this error (Figure 4, Supporting 
Information Figures S1 and S2), but had a cost in terms of increased 
training data requirements.

Another challenge is the potential antipathy towards use of 
drones, because sometimes the literature presents them in terms 
of taking over the role of surveyors. This is unjustified, because 
equally large amounts of human effort will continue to be required 
for collection and processing of drone imagery, collecting and cu‐
rating training and test data, and developing detection routines. 
Just as Fraser et al. (1999), almost two decades ago, demonstrated 
improved aerial counting from a kite‐mounted camera, drones are 
now becoming part of the toolkit. Furthermore, researchers and 
managers can be excited about access to fast and accurate counting, 
without adequately considering the potential uncertainty, labour 
and skills required for effective use of drones for monitoring large 
and complex wildlife aggregations, and that drones still cannot pro‐
duce all the required biodiversity metrics for monitoring (Callaghan, 
Brandis, Lyons, Ryall, & Kingsford, 2018).

4.4 | Recommendations

There are major improvements in data collection, interpretation and 
understanding which can come through using drone imagery, includ‐
ing cost savings and potentially improved accuracy. Applications will 
continue to grow, assisted by development of semi‐automated meth‐
ods such as ours. Drones should be viewed as a tool to complement 
ecological and environmental monitoring practitioners, rather than 
a replacement option. We suggest development of semi‐automated 
approaches should focus on adaptability to deliver key monitoring 
indicators (Baxter & Hamilton, 2018), and that detection methods 
themselves should aim for three main properties: (a) use predictor 
data that is easily derived from common drone‐based (or airborne) 
imagery; (b) minimal parametrisation among environments, ensuring 
any parametrisation should be accessible to non‐expert users; and 
(c) implementation on widely available platforms, not requiring sig‐
nificant local computing resources but able to manage large volumes 
of image data.
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