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ing and managing wildlife populations but a broad and generalised framework for
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their application to complex wildlife aggregations is still lacking.
2. We present a generalised semi-automated approach where machine learning can

map targets of interest in drone imagery, supported by predictive modelling for
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estimating wildlife aggregation populations. We demonstrated this application on
four large spatially complex breeding waterbird colonies on floodplains, ranging
from c. 20,000 to c. 250,000 birds, providing estimates of bird nests.

3. Our mapping and modelling approach was applicable to all four colonies, without
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any modification, effectively dealing with variation in nest size, shape, colour and
density and considerable background variation (vegetation, water, sand, soil, etc.).
Our semi-automated approach was between three and eight times faster than
manually counting nests from imagery at the same level of accuracy.

4. This approach is a significant improvement for monitoring large and complex ag-
gregations of wildlife, offering an innovative solution where ground counts are
costly, difficult or not possible. Our framework requires minimal technical ability,

is open-source (Google Earth Engine and R), and easy to apply to other surveys.
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1 | INTRODUCTION

Recent advances in technology offer the potential to improve field
methods for rapidly and effectively monitoring biodiversity (Pimm
et al., 2015). Among these advances is the use of aerial vehicles, or
drones, that can carry remote sensing instruments to capture ex-
tremely high spatial resolution imagery with temporal flexibility
(Anderson & Gaston, 2013). Drones are relatively easy to use and
their increasing ‘off the shelf’ application to wildlife research has
been innovative and exciting (Chabot & Bird, 2012, 2015). There are

increasing novel applications for monitoring both populations and

behaviours of different fauna, including birds (Chabot & Francis,
2016; Hodgson et al., 2018), elephants (Vermeulen, Lejeune, Lisein,
Sawadogo, & Bouche, 2013), crocodiles (Evans, Jones, Pang, Saimin,
& Goossens, 2016), chimpanzees (Van Andel et al., 2015) and marine
mammals (Seymour, Dale, Hammill, Halpin, & Johnston, 2017).
Given the ability of drones to collect high quality data over large
aggregations of wildlife, they offer an attractive opportunity for im-
proving methods and increasing cost effectiveness of monitoring
wildlife populations. The relative advantages of aerial counting—
both in-air and from aerial imagery—for wildlife monitoring is long

established, including reduced detection error, increased precision,
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reduced observer effects and retrospective analysis of data. For ex-
ample aerial counting was more accurate and precise than ground
counting using aerial images of penguin colonies (Fraser, Carlson,
Duley, Holm, & Patterson, 1999) and geese (Boyd, 2000). Similar ad-
vantages of image-based counts over ground-based counts have been
demonstrated for drone-acquired imagery too (Hodgson et al., 2018).

At large spatial scales (km) and for large aggregations (e.g.
>5,000-10,000 individuals), in-air aerial surveys provide cost effec-
tive information on counts of individuals, breeding-pairs and nests
(Caughley, 1977; Kingsford & Porter, 2009), although sometimes
suffering high variability and imprecision (Kingsford, 1999). High-al-
titude imagery from aeroplanes allows large areas, if not whole ag-
gregations, to be captured in single images (e.g. in Boyd (2000) c.
30 photos captured flocks of c. 10,000 geese). Owing to the fact
that similar areas require many thousands of drone images and to
the extra complexity from increased spatial resolution, drone use for
monitoring wildlife aggregations continues to be limited to monitor-
ing relatively small aggregations (i.e. <5-10,000 individuals), though
there are some notable exceptions (Afan, Manez, & Diaz-Delgado,
2018; Chabot & Bird, 2012; Chabot, Craik, & Bird, 2015).

Manually counting targets of interest (e.g. individual animals,
breeding-pairs, nests) from aerial images, regardless of capture
platform, is laborious. This has driven the development of auto-
mated or semi-automated counting approaches (Chabot & Francis,
2016; Hollings et al., 2018), aided by the widespread availability of
increased computing power, growing computer literacy and new
methods. Current approaches typically involve spectral thresholding
(Chabot & Bird, 2012; Seymour et al., 2017), point process algorithms
(Descamps, Bechet, Descombes, Arnaud, & Zerubia, 2011) or com-
binations of spectral properties and predictive modelling (Hodgson
et al., 2018). These methods rely on high contrast (i.e. dark animals
on light backgrounds or light animals on dark backgrounds) and con-
sistency in the shape and colour of the targets (Hollings et al., 2018).
They are generally only applicable when the spectral and structural
characteristics of the animals (in the images) are unique compared
to the rest of the image (Chabot & Francis, 2016). More recently,
remote sensing-based methods have been used to overcome chal-
lenges with low contrast and high variation among target objects
(Afan et al., 2018; Chabot, Dillon, & Francis, 2018; Drever et al.,
2015; Groom, Petersen, Anderson, & Fox, 2011; Liu, Chen, & Wen,
2015).

Despite the interest in automated methods for counting aggre-
gations of birds, their use by ecologists and managers for monitor-
ing complex wildlife aggregations remains limited (Chabot & Francis,
2016), with manual approaches still dominating (Buckland et al.,
2012; Drever et al., 2015). There are three key reasons that have
been highlighted for the disconnect between new methods and their
ecological application: (a) most methods have only been demon-
strated at small spatial scales relative to real-world applications
(even if the number of individuals is very large) and in homogenous
areas with little environmental complexity (Hollings et al., 2018); (b)
ecological complexity and outcomes are not appropriately consid-
ered with respect to the mobility of individuals and variation in the

types of target features of interest (Baxter & Hamilton, 2018); and (c)
there is a high technical threshold for implementing most methods
(Chabot & Francis, 2016).

In this paper, we develop a semi-automated framework for mon-
itoring large complex wildlife aggregations using drone-acquired im-
agery. We use the case study of colonial waterbird breeding colonies
because they present the key challenges currently inhibiting uptake
of drone-based methods; the colonies cover large spatial extents and
can have range of density of animals across these extents; there are
many thousands of highly mobile individuals that cannot be contained
to single drone images; the target features of interest are nests, which
can exhibit significant differences in structure and colour across space
and time (e.g. empty nests, adult/juvenile/chick/egg occupied nest,
variable nest material, variable nest shape and arrangement); and
considerable variation in background environment (mud, sand, water,
live/dead vegetation). We developed a set of generalised methods,
that could be transferred directly between colonies without mod-
ification, and required relatively little technical ability to apply. We
captured imagery over four breeding waterbird (mostly Straw-necked
Ibis) colonies in New South Wales, Australia, ranging in size from c.
20,000 to over 200,000 birds, including the largest ever waterbird
colonies to be surveyed by drone. We detail flight planning, image
acquisition and processing, manual and automated methods for map-
ping and counting nests. We include the Google Earth Engine and R
code required for our analyses, along with a web-app to explore drone

data, intermediate machine learning predictor and nest map layers.

2 | MATERIALS AND METHODS

Our primary motivation was mapping and counting nests for breed-
ing colonial waterbirds, with wide applicability. The methodology
needed to work on both small (c. 10,000-20,000 birds) and large
(200,000+ birds) colonies and be transferable across different envi-
ronments and applications, requiring limited technical modification
or ability. We developed a modular approach that included: (a) drone
image surveys of four large breeding colonies; (b) manual counting
of nests for training and validation; (c) a machine learning mapping
method to map nests from drone imagery; and (d) a predictive mod-

elling method to estimate total nest numbers.

2.1 | Study location and bird colony details

Straw-necked Ibis Threskiornis spinicollis are an Australian nomadic
waterbird species which form very large breeding colonies, some-
times mixed with other waterbird species, when ecological condi-
tions are favourable (Brandis, Koeltzow, Ryall, & Ramp, 2014). We
surveyed four colonies: Merrimajeel, Zoo Paddock, Eulimbah and
Block Bank (Table 1). We surveyed the colonies at around their
maximum size, determined by progression of breeding (Brandis,
Kingsford, Ren, & Ramp, 2011). Straw-necked lbis typically make
their nests in flooded wetlands and floodplains, using inundated
vegetation as nesting material raised above ground/water level. The
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TABLE 1 Location and information on drone-surveyed waterbird colonies. All colonies were in New South Wales, Australia. Nests were
manually counted from the drone-based imagery. Nest count error was calculated from in situ ground counts cross-referenced with manual

nest counts from drone imagery

Approx. Manual nest Manual nest Estimated number
Location (Colony name) Date colony size count count error of birds?
Lachlan River (Merrimajeel) Oct 2016 60-65 Ha 96,989 +6.1% 200-250,000
Macquarie Marshes (Zoo Paddock) Nov 2016 60-65 Ha 20,411 +8.8% 40-50,000
Murrumbidgee River (Eulimbah) Nov 2016 15-20 Ha 13,343 +8.4% 30-40,000
Lachlan River (Block Bank) Sep 2017 7-10 Ha 7717 +12.1% 15-20,000

2From (Lyons, Brandis et al., 2018) - the estimated number of birds incorporates site-specific information.

vegetation at the sites was dominated by Lignum shrubs Duma flor-
ulenta and Common Reed Phragmites australis. Nests can be isolated
nests or ‘clumped’ (10-200 nests). The nests are generally round or
oblong in shape, but are often irregular in large clumps, with tram-
pled vegetation, forming a dark green to brown colour, which in-
creasingly whitens with guano (Figure 1), until nests are abandoned
either when offspring are lost or chicks fledge; at the latter stages,
nests begin to lose structure and colour. At any point, nests may
be empty, occupied by adults, eggs or juveniles, or a combination
depending on parental foraging and care and chick mortality and
fledging (Figure 1). All four colonies we surveyed had a mix of nest
and juvenile ages, along with foraging and in-flight birds away from
nests. Most (>90%-95%) of birds in the colonies were Straw-necked
Ibis, a dark glossy blue-black bird on their back and wings, and with
a white underside (black when viewed from above). The remain-
ing 5%-10% of birds were composed of Australian White Ibis T.
Molucca, Glossy Ibis Plegadis falcinellus and Spoonbills Platalea spp.
All the bird species are <1 m tall and <50 cm in length when roost-

ing, and most nests are between 20 and 40 cm in diameter.

2.2 | Drone data and processing

Drone image data were collected during Spring and Summer of
2016 and 2017 (Table 1), using a DJI Phantom 3 Professional quad-
copter, with the stock single sensor red/green/blue (RGB) camera
(4,000 x 3,000 image size, lens FOV 94° 20 mm). Colonies were
within large flooded extents (km's wide), so multi-rotor drones were
the only option, with no landing area for fixed-wing drones. We
launched a drone from an amphibious vehicle or canoe used to enter
the colonies. Flights were conducted using parallel flight lines, at c.
100 m and speed of 5-10 ms! (Lyons, Brandis et al., 2018; Lyons
et al., 2019). We aimed to acquire imagery with c. 70% forward and
lateral overlap to ensure adequate coverage for post-processing. We
acquired imagery over the entire extent of the four colonies, includ-
ing a 200-300 m buffer around the colony edges. Depending on
weather and environmental conditions, we surveyed 5-20 hectares
per flight, requiring multiple flights to survey each colony. There
were no obvious negative interactions with the waterbirds; further
animal ethics considerations can be found in Lyons, Brandis et al.
(2018), and a more detailed protocol for drone-based monitoring of

waterbird colonies in Lyons et al. (2019).

The drone imagery was processed using the commercial soft-
ware Pix4DMapper (v4.19, Pix4D SA), which uses a photogrammetry
technique called ‘structure from motion’ to identify points in over-
lapping images, ultimately generating a 3D point cloud reconstruc-
tion of the landscape. The 3D information is then used to generate a
digital surface model and an orthorectified image mosaic. Only stan-
dard accuracy GPS (5-10 m accuracy) was used for georeferencing.
This resulted in some error in absolute geographic location, but was
not important, given our focus on identification and relative position
of nests in the image mosaics.

2.3 | Semi-automated approach for nest counting

Once the imagery was acquired, we needed to effectively identify
nests which were highly variable in shape and colour, and some-
times had low contrast to the surrounding environment (Figure 1).
We initially tested a point process algorithm (Descamps et al.,
2011) but it could not handle large data sizes; an object-based
image analysis routine (sensu Chabot et al. (2018)) but it had dif-
ficultly identifying more than 3,000-5,000 nests with one ruleset;
and a machine learning/modelling approach (Hodgson et al., 2018)
but it could not identify more than c. 1,000 nests with one param-
eterisation (see Data accessibility for modified Matlab routine). No
particular technique worked effectively within or between the col-
onies, supporting similar findings on the limitations of automated
and semi-automated methods (Hollings et al., 2018). So, we devel-
oped a modular approach, adaptable to variable target properties
and scalable to large spatial extents, applicable to multiple colo-
nies. This involved first mapping the area of nests using a remote
sensing approach, and then estimating the number of nests using a

predictive modelling approach.

2.3.1 | Manual counts for training and
validation data

A comprehensive training and validation dataset was critical for
developing counting methods. So, we first manually and system-
atically counted all the nests in the imagery over all colonies. We
imposed a 50 x 50 m grid of quadrats on each colony, and digi-
tally annotated every visible nest. We used this gridded method

for two reasons: (a) it enabled an observer to sequentially work
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through the whole colony, while reducing distraction (and com-

puter memory overhead) from surrounding areas; and (b) it re-
flected real-world practices when users choose only a limited
number of training quadrats to manually count nests. During the
field work, we also counted nests (in situ) at several GPS-tagged
locations at each colony, which we used to test the accuracy of
the drone-based manual counting.

FIGURE 1 Example drone imagery
showing the variation in nest types

and environments across four breeding
colonial waterbird (mostly Straw-necked
Ibis) colonies. Images from top row

to bottom row are from the following
colonies: Merrimajeel, Zoo Paddock,
Eulimbah and Block Bank (details in
Table 1)

2.3.2 | Machine learning mapping

We applied a supervised machine learning approach to map nests
at each colony. We defined nests as any material or bird that con-
stituted a nest or nest clump, based on our experience in the field.
Motivated by its robustness to redundant predictor variables, we

used a random forest classifier (Breiman, 2001), which enabled us to
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use a training dataset of nest locations and a suite of relevant image
predictor variables to predict nests out into image pixels across the
entire study area. The random forest procedure works by taking
many different bootstrapped samples of the training data and fit-
ting a classification tree to each of them, with each candidate split
along the decision tree considering a random selection of the predic-
tor variables. This ensures uncorrelated trees and stops the decision
trees from overfitting (Breiman, 2001). The final prediction is taken
as the mode of the classification tree results, with the classification
being robust to collinear and redundant predictor data. This allowed
us to include many different image-based predictor variables with-
out altering the approach for different colonies.

All nests were manually identified, so we sampled a subset to
train the random forest classifier to simulate the scenario of man-
ually counting only a small proportion of the nests/image area. To
simulate the 50 x 50 m quadrats, we placed a grid of points across
the colony at least 30 m apart and within 1 m of an identified nest
(to avoid choosing training areas where there were no nests), and
randomly chose a number of those points as a classifier training lo-
cation. To approximate the 50 x 50 m quadrat area, a 30 m buffer
was placed around each chosen training locations, within which all
manually counted nests were selected for training. Each 30 m buffer
would select between c. 100-1,000 nests. We trialled between 5
and 20 training locations for each of the colonies. The classifier also
requires non-target features (non-nest) randomly spread across the
colonies: 1,000 points for the smaller colonies (Eulimbah and Block
Bank) and 10,000 points for the larger colonies (Merrimajeel and Zoo
Paddock).

We derived arithmetic and textural metrics from the red, green
and blue channels (1, g, b respectively) in the drone data to use as pre-
dictor variables in the random forest classification. These included: a
‘white’ index #; a Laplacian-8 edge-detection kernel on the ‘white’
metric; an RGB vegetation index E (Bendig et al., 2015); a ‘green
brightness’ index %ﬁr; the ‘contrast’, ‘variance’, ‘inverse difference
moment’ and ‘shade’ texture metrics from the Gray Level Co-occur-
rence Matrix (Haralick, 1979), applied to each of the ‘white’ index
and blue band; the standard deviation within a 2 m and 7 m radius of
each pixel applied to the ‘shade’ metric and vegetation index; and a
1st and 2nd order difference of Gaussians (Polakowski et al., 1997)
on the ‘shade’ metric.

The training dataset was compiled by extracting the pixel values
for each image metric layer within a 10 cm buffer (minimum nest
diameter 20 cm), around each training nest and non-nest point, so
the random forest classifier was a binary nest and non-nest classifi-
cation. The algorithm was parameterised with 500 trees and a min-
imum leaf population of 10. We implemented the predictor variable
calculation and random forest classification in Google Earth Engine
(Gorelick et al., 2017), allowing a seamless prototyping, visualisation
and production environment for processing the large high-resolution
image datasets. Any contiguous areas <0.03 m? (minimum nest size
of 20 cm diameter) were deemed to be noise and removed before
exporting. Google Earth Engine is freely available to anyone, and we
provide the JavaScript code required to run the classifications, along

with an interactive web-app to explore some drone data, predictor
layers and nest classification interactively (link in Data accessibility
section).

We assessed the nest mapping accuracy via a standard error ma-
trix approach, using the full manually counted dataset, along with an
extended collection of background points. The background points
were compiled from random points spread across the colony area
(approx. as many points as there are nests), constrained to be >20 cm
from a nest point. This provided a balanced validation dataset, to
get a good estimate of overall mapping accuracy, as well as omission
and commission error for nest mapping. We used an empirical boot-
strapping approach (Lyons, Keith, Phinn, Mason, & Elith, 2018) to
get confidence intervals for overall accuracy. Accuracy metrics were
calculated in r version 3.5.1 ((R Core Team 2018); see Data accessi-

bility section).

2.3.3 | Predictive model estimation

To estimate the number of nests as a function of the mapped nest
area for each colony, we used predictive modelling. We first sum-
marised the number of manually counted nests and the mapped nest
area within each 50 x 50 m quadrat. We then predicted the number
of nests in each quadrat, with the whole colony count being the sum
of the quadrat estimates. We used two simple approaches: (a) an as-
sumption that the number of nests was directly proportional to the
mapped nest area (linear area:count ratio); and (b) a generalised lin-
ear model (GLM; Poisson error distribution) of nest count as a func-
tion of nest area and local nest density. We expected that the local
density of nests would have a relationship with the number of nests.
Density was calculated as the percentage of the 50 x 50 m quadrat
mapped as nests. Using a GLM with a negative binomial error distri-
bution or a generalised additive model with smoothers for nest area
and density provided no appreciable gains, so neither was pursued.

We used a resampling procedure to examine the number of man-
ually counted 50 x 50 m quadrats needed to accurately estimate the
number of nests for a whole colony. This involved repeated random
sampling of n quadrats, estimating the number of nests using the
area ratio and GLM approaches described above. We used 800 iter-
ations without replacement (i.e. Monte Carlo resampling, not a boot-
strap) for each of 1, 2, ..., n_, quadrats. This resulted in a sampling
distribution of 800 whole-colony nest count estimates at each n.

To simulate the scenario of limited resources for manual count-
ing, we implemented another resampling approach to determine
whether a given sample of the manually counted quadrats provided
an accurate estimate (plus a confidence interval) of nest count for
a whole colony. This involved a random draw of n quadrats (i.e.
scenario of choosing a set of quadrats for training), and applying a
repeated k-fold cross-validation using the area ratio and GLM esti-
mation approaches. Each random draw of quadrats was stratified by
mapped nest area density, to simulate choosing a range of nest den-
sity quadrats to count. We used k = 10 and 10 repeats for the cross-
validation, and varied n from c. 10%-40% of the total number of
manually counted quadrats. This resulted in a sampling distribution
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of 100 nest count estimates for each random draw of quadrats, and
we took the mean as the resampling estimate and 2.5 and 97.5 per-
centiles as a 95% confidence interval. We decided on k-fold resam-
pling as a good approach to reduce bias for the small sample sizes,
but a range of resampling options are available (Lyons, Keith, et al.,
2018). All statistical analysis was performed in r version 3.5.1 ((R

Core Team 2018); see Data accessibility section).

3 | RESULTS

3.1 | Manual training and validation nest counts

The four study colonies varied widely in size, number of nests and bird
density (Table 1). The flying height of c. 100 m generated orthomosaic
imagery with a pixel size between 3 and 4 cm. It took 5-15 min to
manually count the nests in a 50 x 50 m quadrat, with higher nest den-
sity on the upper end of that time. Ibis nests and the flooded colony
environment were so variably complex that it was often not possible
to accurately manually count nests, even from 3 to 4 cm pixel drone
imagery. Occasionally, artefacts from drone imagery processing also
obstructed counting. The accuracy of the manual counting was esti-
mated using the on-ground field counts, which ranged from *6% to
+12% (Table 1). The smallest colony had a manual count of 7,717 nests
and the largest colony had 96,989 nests, and with an estimated popu-
lation of over 200,000 birds at the time (Lyons, Brandis et al., 2018).

3.2 | Semi-automated approach

The same Google Earth Engine code was applied to each colony,
showing that the nest area mapping routine was robust to differ-
ing background environments and nest characteristics within and
among each of the colonies. Around 10 of the 30 m training buffer
locations were required for consistent classification of the large ex-
tent colonies (Merrimajeel, Zoo Paddock; c. 5% total area), and around
5 for the smaller extent colonies (Eulimbah, Block Bank; c. 10% total
area). The chosen predictor variables did a good job at extracting the
salient features of the bird colonies (Figure 2) and the machine learn-
ing classification appeared to identify nests and birds appropriately
(Figure 3). The accuracy assessment showed the nest mapping rou-
tine performed well, with overall accuracy between 94% and 96%
for Merrimajeel, Eulimbah and Block Bank and 86% for Zoo Paddock
(Table 2). For all colonies, omission error was low and commission
error was higher (Table 2), demonstrating that the mapping routine
rarely missed nests, but included too much background as nest mate-
rial. This was particularly the case for Zoo Paddock, which had a very
high commission error (27.3%) and a lower overall accuracy (86%).
Supporting Information Table S1 contains the raw accuracy assess-
ment error matrices from which the accuracy measures were derived.

The first resampling routine demonstrated that considerable
variation in nest estimates was likely given any random draw of
quadrats, but only a small subset of the quadrats was required to
capture most of the variation and provide estimates within the man-

ual count error range (Supporting Information Figure S1). For the

three colonies with >50 quadrats, the variability increased relative to

the population size component of a finite population corrected stan-

dard error, 1 / (1— ﬁ) /N, where n is the number of sampled quadrats

and N is the total available quadrats. So for larger colonies, users
could use this relationship with choose the size of the manual count
needed based on either a desired count error or estimate where it
starts to tail off towards zero. There was no noticeable improvement
in using the GLM estimation method over the straight area ratio
method. Comparing the results of the nest count estimates for indi-
vidual quadrats showed that there was a large amount of variation
among estimates for individual quadrats, the primary motivation for
the use of a resampling-based estimate (Supporting Information
Figure S2).

For the k-fold nest count estimation, we decided that an ade-
quate number of quadrats (n) to use would be signified by most of
the estimates from each k-fold cross-validation falling within the
error margin of the manual nest counting (Figure 4, Table 3). For
the two largest colonies, Merrimajeel and Zoo Paddock, we used 30
quadrats (c. 12% of all 50 x 50 m quadrats) to provide accurate es-
timates. For the two smaller colonies, Eulimbah and Block Bank, we
used 15 and 10 quadrats respectively (c. 20% and c. 30% of total
quadrats respectively). The manual effort time saving was best for
the larger colonies—the nest counts were eight times faster for the
two larger colonies (Merrimajeel and Zoo Paddock), but only five and
three times faster for Eulimbah and Block Bank respectively (Table 3).
The estimation was most accurate for the smaller two colonies, and
there was some over estimation for the larger colonies, particularly
Zoo Paddock (Figure 4), that could not be rectified with more train-
ing data. Again, there was no noticeable gain in using the GLM es-
timation method over the straight area ratio method; the gain from
stratifying the random draw by mapped nest density was far more
appreciable.

4 | DISCUSSION

We developed a generalised approach for monitoring complex wild-
life aggregations, demonstrated through semi-automated analysis of
drone-based remote sensing imagery over four large and complex
waterbird colonies. The approach accurately mapped nests, and
subsequently provided accurate estimates of nest numbers. The
method offers significant time savings compared to manual counts
from the imagery. In our study, we obtained accurate maps and es-
timates of nests for one of Australia's more extensive breeding of
colonial waterbirds, and some of the largest waterbird colonies ever
surveyed via drone. Our methodology is simple and robust enough
to be applied in multiple environments, and works for both sim-
ple and complex target features. Continued development will see
drone-based monitoring become integrated into waterbird monitor-
ing (Lyons et al., 2019), and used to help quantify salient biological
features like nesting success (Sarda-Palomera, Bota, Padilla, Brotons,

& Sarda, 2017). There are clear benefits for monitoring some of
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FIGURE 2 Anexample of image
metrics derived from drone imagery

over a waterbird (mostly Straw-

necked Ibis) colony (Eulimbah), used as
predictor variables in the random forest
classification: (a) raw drone imagery; (b)
‘white’ brightness image; (c and d) Gray
Level Co-occurrence Matrix (GLCM)
‘shade’ and ‘contrast’ of the ‘white’ metric;
(e) GLCM ‘shade’ of the blue reflectance;
(f) RGB vegetation index; (g) difference of
gaussians applied to the GLCM ‘shade’ on
the ‘white’ metric; (h) an RGB composite
of the ‘white’ metric and the standard
deviation within a 2 m and 7 m radius for
the GLCM ‘shade’ of the ‘white’ metric

the many other species of birds that form complex aggregations,
and our methods will be easy to test on other wildlife in different
environments.

Our approach is modular, and the nest mapping and counting is
implemented on free open source platforms, allowing users to read-
ily change parameters or substitute their own or more appropriate

methods. The semi-automated approach applied a machine learn-

ing classifier to high-resolution drone imagery to identify nests
(Figures 2 and 3, Table 2), supported by modelling to estimate nest
counts (Figure 4). The methods were effectively applied across four
different waterbird colonies, that contained highly variable target
features on variable backgrounds. The colonies ranged in size from
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around 7,000 nests to almost 100,000 nests (Table 1), and our
semi-automated method required only relatively small amount of

training data to produce comparable accuracy to manually count-
ing from the drone imagery (Figure 4, Table 3). Here we further
discuss the cost-benefit aspects, opportunities for wider uptake,
current challenges, and finish with some recommendations moving

forward.

FIGURE 3 Example nest area
classifications for four colonial waterbird
(mostly Straw-necked Ibis) colonies,
surveyed via drone and classified using
a random forest classifier in the Google
Earth Engine. Images from top row

to bottom row are from the following
colonies: Merrimajeel, Zoo Paddock,
Eulimbah and Block Bank. Full details in
Tables 1 and 2

4.1 | Cost-benefit of the semi-automated approach

The two key motivators for drone-based automated methods are re-
ducing (on-ground) human observer bias and reducing cost (Baxter &
Hamilton, 2018; Chabot & Bird, 2015; Hodgson et al., 2018; Hollings
et al., 2018). For large and complex wildlife aggregations, such as our

waterbird colonies, it is rarely possible to perform comprehensive
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TABLE 2 Accuracy assessment results for mapping of nests in
four different waterbird colonies, based on drone imagery and a
machine learning algorithm. Measures include the overall accuracy
(plus a bootstrapped 95% confidence interval) and the omission and
commission error for nests

Colony Overall accu- Nest omis- Nest commis-
name racy (%) (95% Cl)  sionerror (%) sion error (%)
Merrimajeel ~ 94.1 (94-94.2) 1.2 10.4
Zoo 86(85.6-86.3) 0.9 27.3

Paddock
Eulimbah 95.8 (95.5-96) 1.7 6.9
Block Bank 94.7 (94.3-95) 4.7 5.9

on-ground counts and so drone-use provides an attractive option,
and coupled with semi-automated methods, presents significant time
savings too. In our case the large colonies were eight times quicker
to survey (Table 3), representing a cost (time or money) saving of
almost 90% compared to full manual counts. Cost-benefit analy-
sis will continue to vary with user ability and conditions, including
data acquisition in the field, drone image processing, modelling and
programming, and even the level of detail and accuracy required for
monitoring outcomes. Benefits will also vary with the nature of appli-
cation with one-off monitoring perhaps better achieved using manual
methods, until the technology and processes become routine. The

efficiency increases in Table 3 are probably more likely to represent
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the potential time savings of further application of the methods. For
new applications in novel environments, large manual counts are

probably still required to understand the potential sources of error.

4.2 | Opportunities for uptake of semi-
automated methods

Transferability across environments and spatial scales has prevented
widespread adoption of semi and fully automated methods in wild-
life monitoring (Chabot & Francis, 2016; Hollings et al., 2018). We
successfully implemented our semi-automated approach, using the
same routine/code, on four different waterbird colonies, providing
immediate applicability for other avian applications, and opportu-
nities more broadly for large complex aggregations of wildlife. The
key challenge we overcame was identification of target features with
high spatial and spectral variation, on high variability backgrounds,
across large spatial extents. Most current detection approaches rely
on methods that require high consistency in the spatial and spectral
organisation of target and background features. Our use of a ran-
dom forest classifier efficiently handled redundant predictor data
(Breiman, 2001), allowing inclusion of many different colour, spatial
and textural metrics as predictor layers. This helped capture more of
the spatial and spectral variation in target features, compared to just
using the image colour, as well as potential image blur and illumina-

tion artefacts (Figure 3, top row).
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FIGURE 4 Resampling estimates of nest counts for four breeding waterbird (mostly Straw-necked Ibis) colonies surveyed via drone, trained
using a classification of nest area and manually counted nests. Each black dot represents the mean of the sampling distribution (10x repeated
k-fold k = 10 cross-validation) for a different subset of the manually counted training nests (corresponding lines denote 95% percentile), and
the red horizontal lines denote the manual estimate for the whole colony, and the 95% error margin calculated from on-ground counts
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TABLE 3 Manual and semi-automated counting results for drone-surveyed waterbird colonies. Colonies were divided into a grid of
quadrats and nests were manually counted with accuracy from in situ counts. k-fold nest estimates were derived from our semi-automated

approach, using 40 different random subsets of quadrats

50 x 50 m quad- Manual nest count
Colony name rats in grid (+manual error)
Merrimajeel 233 96,989 (91,073-102,905)
Zoo Paddock 244 20,411 (18,615-22,207)
Eulimbah 71 13,343 (12,222-14,464)
Block Bank 33 7,717 (6,783-8,651)

Research is increasingly tackling this issue of consistency across
target and background features, adapting methods from remote
sensing mapping (Afan et al., 2018; Chabot et al., 2018). Application
of a single consistent detection routine to many different applica-
tions will provide significant opportunity for broad uptake across sci-
entific and management applications (Hollings et al., 2018). Although
we found that existing methods (Chabot et al., 2018; Descamps
etal, 2011; Hodgson et al., 2018) were not directly able to deal with
the level of complexity in our case studies, our method ultimately
required more training data, which reduces the overall cost saving.
Thus continued development of a range of methods will provide op-
portunities for significant time and cost savings when applied over
large spatial extents, over time.

Detection approaches from imagery, such as drone imagery, are
increasingly benefiting from the remote sensing disciplines (Chabot
et al., 2018), due to innovations in dealing with large volumes of data
efficiently. Existing detection methods typically deal with image tiles
in the order of 1-10 Mb. Our waterbird colonies involved 500 Mb
to 5 Gb of data, requiring significantly improved data management
and analysis. Use of the Google Earth Engine platform (or similar
platforms) enables handling of large data, and will facilitate future
expansion into web-based tools where users only supply imagery
and training data, reducing local expertise and computing resource
requirements.

We successfully identified both nests and individual birds
when they were away from their nests (see Figure 3, 3rd row). This
demonstrates the opportunity to use our mapping driven approach
to identify and count individual waterbirds. Indeed Chabot et al.
(2018) used an object-based mapping approach for identifying and
counting individual Snow Geese. If only individual birds were of
interest, and they did not form complex spatial aggregations, the
mapping process would be sufficient to identify and count individ-
uals (i.e. the k-fold estimation process would be unnecessary). This
represents an additional cost saving because it took less training
data to train the machine learning mapping (e.g. for Merrimajeel,
c. 5% of the quadrats were needed to train the random forest,
but 12% were needed to train the k-fold estimation). For small
and simple tasks (e.g. counting just a few thousand birds or nests)
our k-fold estimation process could also be replaced with simple
thresholding or classification of the predictor metrics. For exam-
ple thresholding and vectorizing the predictor layers we used (e.g.

Figure 2, bottom row) produces accurate nest counts, but these

Mean and range of k-fold
nest estimates

k-fold count effort
(hours and speed-up)

Full count ef-
fort (hours)

99,645 (90,383-106,727) 40 5(8x)
21,432 (16,627-27,361) 42 5(8x)
13,479 (12,212-14,879) 12 2.5 (5x)

7,777 (7,152-8,425) 5.5 2 (3x)

thresholds become increasingly variable as spatial scale increases,
making consistent application difficult.

4.3 | Challenges for drone-based monitoring

Our main challenge was converting nest maps to nest counts. A re-
mote sensing approach allowed us to make very accurate nest maps
(three colonies ¢. 95% accurate, one colony c. 86%; Table 2), but the
complex organisation of nests (i.e. different shapes and sizes, irreg-
ular overlapping and aggregation) prevented a direct conversion to
singular pin-pointed nest locations. We used the k-fold estimation
approach to overcome this limitation to estimate nest counts from
nest maps, but note that while the overall colony counts were ac-
curate, nest counts for some individual quadrats contained signifi-
cant error (Figure 4, Supporting Information Figure S2). For the Zoo
Paddock colony, the high commission error (Table 2), led to some
over estimation of nest count (Figure 4, Table 3). This colony had a
large spatial extent but was only sparsely populated, compared to
the other large colony (Merrimajeel; Table 1). Improved modelling of
density effects may reduce this problem. As it was, only five out of
the 40 scenarios we ran would be considered a sizable overestima-
tion (Figure 4), and even then these numbers would be unlikely to
affect local management decisions (Brandis et al., 2011), but this
may vary depending on the application. We randomly selected
quadrats, so a more judicious initial choice of quadrats for training
(e.g. choosing a range of nest densities) may also rectify this issue
to some degree.

Another challenge is the potential impact of uncertainty (c.
6%-12%, Table 1) in manual counting that can propagate through
to the mapping and estimations. Moving semi-automated methods
to increasing spatial scales or more complex environments requires
dealing with more variation in image quality and limitations in the
resolution able to be captured (Hollings et al., 2018). In our surveys,
image resolution and quality was a challenge, affected by our ability
to access appropriate remote points for take-off and landing, along
with environmental and ethics considerations that limited time avail-
able to collect imagery. This led to varying incident sun angles and
wind conditions during image collection, resulting in sun glint and
image blur that sometimes obscured manual counting. Identifying
old nests (e.g. Figure 1, top and bottom rows) was difficult, poten-
tially further increasing manual counting errors. Our cross-validation

approach was motivated by the need to account for uncertainty,
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and generally accounted well for this error (Figure 4, Supporting
Information Figures S1 and S2), but had a cost in terms of increased
training data requirements.

Another challenge is the potential antipathy towards use of
drones, because sometimes the literature presents them in terms
of taking over the role of surveyors. This is unjustified, because
equally large amounts of human effort will continue to be required
for collection and processing of drone imagery, collecting and cu-
rating training and test data, and developing detection routines.
Just as Fraser et al. (1999), almost two decades ago, demonstrated
improved aerial counting from a kite-mounted camera, drones are
now becoming part of the toolkit. Furthermore, researchers and
managers can be excited about access to fast and accurate counting,
without adequately considering the potential uncertainty, labour
and skills required for effective use of drones for monitoring large
and complex wildlife aggregations, and that drones still cannot pro-
duce all the required biodiversity metrics for monitoring (Callaghan,
Brandis, Lyons, Ryall, & Kingsford, 2018).

4.4 | Recommendations

There are major improvements in data collection, interpretation and
understanding which can come through using drone imagery, includ-
ing cost savings and potentially improved accuracy. Applications will
continue to grow, assisted by development of semi-automated meth-
ods such as ours. Drones should be viewed as a tool to complement
ecological and environmental monitoring practitioners, rather than
a replacement option. We suggest development of semi-automated
approaches should focus on adaptability to deliver key monitoring
indicators (Baxter & Hamilton, 2018), and that detection methods
themselves should aim for three main properties: (a) use predictor
data that is easily derived from common drone-based (or airborne)
imagery; (b) minimal parametrisation among environments, ensuring
any parametrisation should be accessible to non-expert users; and
(c) implementation on widely available platforms, not requiring sig-
nificant local computing resources but able to manage large volumes

of image data.
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